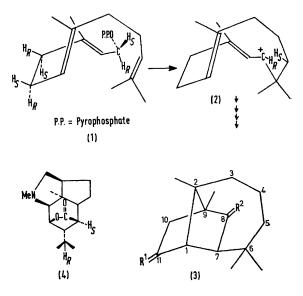
Stereochemistry of Culmorin Biosynthesis


By JAMES R. HANSON* and ROBERT NYFELER

(The School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary The labelling pattern in the sesquiterpenoid culmorin biosynthesised from $[2(S)-2\cdot^{3}H,2\cdot^{14}C]$ - and $[5(R)-5\cdot^{3}H,2\cdot^{14}C]$ -mevalonate shows that the endo-C-10 proton originates from the 2(S) position whilst the C-11 hydroxy-group has displaced a pro-5(R) proton; in contrast to dendrobine an eleven-membered ring is implicated, and a pro-5(S)-mevalonoid proton migrates at an early stage in the biosynthesis.

Some recent reports^{1,2} on the biosynthesis of those sesquiterpenoids in which the primary cyclization of farnesyl pyrophosphate is between the terminal pyrophosphate and the distal double bond, have described a hydrogen migration. The biosynthetic function of these rearrangements is to transfer a carbonium ion from the C-10 or C-11 (the distal end) of farnesyl pyrophosphate back to C-1 to initiate further isomerization and secondary cyclizations of the 10or 11-membered ring. We have studied the stereochemistry of *pro-2(S)*- and *pro-5(R)*-mevalonoid labelling of culmorin (**3**; R¹ = R² = β -H, α -OH)³ in this context.

The two $[2^{-3}H]$ mevalonoid hydrogen labels which were located¹ at C-10 could be displaced by enolization. The stereochemistry of labelling at this centre was determined by utilizing the differing rates of exchange of the *exo-* and *endo-*C-10 protons.⁴ $[2(S)-2^{-3}H,2^{-14}C]$ Mevalonic acid was fed to *Fusarium culmorum*. The culmorin was isolated and oxidized to the diketone (3; $\mathbb{R}^1 = \mathbb{R}^2 = O$). The results are summarised in the Table. After treatment of the diketone (3) with NaOD-D₂O for 1.5 h, the product contained 69.3% $[^{2}H_{1}]$ and 30.7% $[^{2}H_{2}]$ species. The exo-C-10 proton resonance (δ 2.28, J 18 Hz) had disappeared whilst the endo-C-10 proton resonance (δ 1.94, J 18 Hz) had collapsed. However, the product retained the $[2(S)-2^{-3}H]$ label. Prolonged treatment (16 h) led to 29.0% $[^{2}H_{2}]$ and 71.0% $[^{2}H_{3}]$ species and to losses of the 2(S)-label $[^{3}H:^{14}C$ ratio 2.81:1]. Thus the endo-C-10 proton of culmorin originates from the 2(S)-position of mevalonate.

Culmorin was shown to incorporate five of the possible six $[5-^{3}H]$ mevalonoid hydrogen labels, *i.e.*, one more than would be expected in the absence of a hydride shift.¹ $[5(R)-5-{}^{3}H,2-{}^{14}C]$ Mevalonic acid was fed to F. culmorum.

TABLE. The incorporation of $[2(S)-2-^{3}H,2-^{14}C]$ - and $[5(R)-5-^{3}H,2-^{14}C]$ mevalonates into culmorin.

		[2(S)-2- ³ H,2- ¹⁴ C]	$[5(R)-5-^{3}H,2-^{14}C]$
Mevalonate ³ H: ¹⁴ C		4.38:1	6.56:1
Atom ratio		3:3	3:3
μ Ci ¹⁴ C fed	••	60	108
Culmorin ⁸ H: ¹⁴ C		3.70:1	4.63:1
Atom ratio		2.53:3	$2 \cdot 1 : 3$
% Incorporation	••	4.3	0.34
Culmorin diketone ³ H	14C	3.68:1	4.52:1
Atom ratio		2.98:3ª	2.0:3
⁸ H: ¹⁴ C after exchange	••	3.59:1	2.41:1
Atom ratio	••	2.91:3	1.1:3
Degree of deuteriation	••	69.3% [² H ₁]	$3\% [^{2}H_{2}]$
		30.7% [${}^{2}H_{2}$]	97 % [2H ₃]

^a Atom ratio based on culmorin = 3:3 to allow for losses due prenyl isomerase.

The culmorin retained only two labels and there was no change in the ³H: ¹⁴C ratio on oxidation to the diketone. Thus the C-11 hydroxy-group has displaced a pro-5(R)mevalonoid hydrogen atom. The stereochemical relationship between the pro-2(S) and pro-5(R) labels is that which would be expected from the folding of farnesyl pyrophosphate (1). When the diketone was treated with 1.5NNaOD-D₂O for 3 days, the product contained 3% [²H₂] and 97% [2H3] whilst both the C-10 and the C-7 proton resonances had disappeared. In the exchange reaction there was a loss of a $[5(R)-5-^{3}H]$ mevalonoid label from C-7. Thus in culmorin this centre, which originates from C-1 of farnesyl pyrophosphate, bears a 5(R)-label and a [5(S)-5-³H]mevalonoid hydrogen $\{=[1(S)-1-^{3}H]$ farnesyl $\}$ has migrated, probably to C-5.1 In the biosynthesis of dendrobine $(4)^2$ the pro-1(R)-hydrogen of farnesol is transferred to C-8. This apparent dichotomy in the hydride shifts [10membered ring: 1(R)-hydrogen migrates; 11-membered ring: 1(S)-hydrogen migrates][†] may be rationalized if we assume that the initial attack of C-1 of farnesyl pyrophosphate (1) on the distal double bond leads to a cyclopropyl ion. Collapse of this to an 11-membered ring (i.e., the formation of a C-1-C-11 bond) (2) involves the transfer of the appropriately oriented pro-1(S) hydrogen atom whereas collapse to a 10-membered ring (C-1-C-10 bond formation) involves the migration of the pro-1(R)-hydrogen atom. The carbonium ion now resides on C-1 of the farnesyl system from whence it may be involved in the further isomerisation and cyclisation of the carbon skeleton.

R.N. thanks the Schweizerischer National-fonds for a Fellowship.

(Received, 11th August 1975; Com. 931.)

Professor D. Arigoni, E. T. H., Zurich, has made the same observation in sativene and longifolene biosynthesis [F. Dorn, P. Bernasconi, and, and D. Arigoni, Chimia (Switz.), 1975, 29, 25].

¹ J. R. Hanson and R. Nyfeler, J.C.S. Chem. Comm., 1975, 171. ² A. Corbella, P. Gariboldi, G. Jommi, and M. Sisti, J.C.S. Chem. Comm., 1975, 288; and references therein.

³ J. N. Ashley, B. C. Hobbs, and H. Raistrick, Biochem. J., 1937, 31, 385; D. H. R. Barton and N. H. Werstiuk, Chem. Comm., 1967, 30; J. Chem. Soc. (C), 1968, 148.
⁴ A. F. Thomas, R. A. Schneider, and J. Meinwald, J. Amer. Chem. Soc., 1967, 89, 68.